首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  国内免费   3篇
安全科学   1篇
废物处理   1篇
环保管理   5篇
综合类   9篇
基础理论   6篇
污染及防治   13篇
评价与监测   3篇
社会与环境   6篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1995年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
31.
This study aimed at relating the variability of Ni biogeochemistry along the ultramafic toposequence to pedogenesis and soil mineralogy. Hypereutric Cambisols dominate upslope; Cambic Vertisols and Fluvic Cambisols occur downslope. The soil mineralogy showed abundance of primary serpentine all over the sequence. It is predominant upslope but secondary smectites dominate in the Vertisols. Free Fe-oxides are abundant in all soils but slightly more abundant in the upslope soils. Whereas serpentines hold Ni in a similar and restricted range in every soil (approx. 0.3 %), Ni contents in smectites may vary a lot and Mg-rich and Al-poor smectites in the Vertisol could hold up to 4.9 % Ni. Ni was probably adsorbed onto amorphous Fe-oxides and was also exchangeable in secondary smectites. High availability of Ni in soils was confirmed by DTPA extractions. However, it varied significantly along the toposequence, being higher in upslope soils, where Ni-bearing amorphous Fe-oxides were abundant and total organic carbon higher and sensibly lower downslope on the Vertisols: NiDTPA varied from 285 mg kg?1 in the surface of soil I (upslope) to 95.9 mg kg?1 in the surface of Fluvic Cambisols. Concentration of Ni in Alyssum murale shoots varied from 0.7 % (Hypereutric Cambisols) to 1.4 % (Hypereutric Vertisol). Amazingly, Ni uptake by A. murale was not correlated to NiDTPA, suggesting the existence of specific edaphic conditions that affect the ecophysiology of A. murale upslope.  相似文献   
32.
ContextProfessional sea fishing is among the world’s most variable (non-standardized) and dangerous sectors of activity. Because of this, it provides a remarkable model to study the complex links existing between resilience and safety. Paradoxically, even if the huge risks being run cause many shipwrecks (low safety level), studies show that these sailors avoid an even greater number of accidents thanks to their exceptional skill and know-how (remarkable resilience level). This article examines several ways of improving safety in an activity of this type.MethodTwo intervention strategies are tested: (i) a micro-ergonomics strategy offering conduct assistance guidelines based on accident analyses of the most serious and frequent causes (collisions while fishing); (ii) a macro-ergonomics strategy comparing the safety level of large firms having committed to a Total Quality approach, to that of smaller companies, often privately owned.ResultNeither of the two strategies works out as expected. The micro-ergonomics anti-collision assistance strategy is misused towards an increase of the fishing objective; the macro-ergonomics strategy is even more surprising: the largest firms suffer from a smaller number of shipwrecks, but a much greater number of work-related injuries; the strategy simply results in a minor shift of the sacrificial decision between performance and safety (loss of men vs. loss of vessels), while maintaining the same priority for financial performance.DiscussionThe article submits a simple modeling of the relationship between resilience and safety, and discusses the choice of strategies for safety-improving interventions, taking into account the system’s financial performance and the legal pressure to which it is subjected.  相似文献   
33.
34.
35.
An increase in ultraviolet-B (UV-B) due to depletion of stratospheric ozone may affect growth of marine phytoplankton by altering the chemistry of their environment. Production of bioactive free radicals, photodecomposition of organic matter, and availability of trace metals are likely to be altered by increased UV-B flux. Such changes to the chemical environment may be both deleterious and beneficial to marine phytoplankton. Extracellular free radicals such as OH, Br(2)(-), and CO(3)(-) are predicted to have a negligible impact, but superoxide and its decomposition product hydrogen peroxide may react rapidly with cell surfaces and destroy membrane function and integrity. Increased UV-B will enhance the bioavailability of the redox active trace metals Fe and Cu. Thus, in the Fe-limited high latitude ocean, increased Fe availability may promote phytoplankton production, while in other parts of the ocean increased Cu availability may be toxic. Overall, the interdependent direct and indirect effects of UV-B on phytoplankton may compensate for each other and account for the ability of marine ecosystems to be subjected to widely variable UV-B flux without apparent damage.  相似文献   
36.
This study examined the effect of regular tillage and cropping on the dissipation rate of PAHs in contaminated soil. Lysimeters were placed under natural climatic conditions for 2 years and designed to measure the concentration of PAHs in soil and leachates and their toxicity. The soil initially contained 2077 microg PAHs g(-1). The largest decrease in PAHs concentration occurred during the first 6 months. No further significant decrease was observed after this time. The surface soil layer always contained significantly less PAHs than the deeper layer, regardless of the treatments. Less than 8.4 x 10(-8)% of the PAH initially present in the soil (e.g. less or equal to 33 microg PAHs per lysimeter) were leached from the soils during the experiment and the leachates presented no toxicity (as measured by the Microtox test). The toxicity of the soils decreased with time and was significantly lower on the cropped soil compared to the other treatments, despite the residual concentration of PAHs being the highest in this soil. This study demonstrated that the dissipation rates of PAHs were slow after using natural attenuation even when tillage and cropping were performed at the soil surface.  相似文献   
37.
Gu HH  Qiu H  Tian T  Zhan SS  Deng TH  Chaney RL  Wang SZ  Tang YT  Morel JL  Qiu RL 《Chemosphere》2011,83(9):1234-1240
The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40 g kg−1) and steel slag (3 and 6 g kg−1) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils.  相似文献   
38.
The quantitative contribution of the forest floor to P nutrition of maritime pine seedlings was experimentally determined by Jonard et al. (2009) in a greenhouse experiment using the radio-isotopic labeling. To extend the results of the experiment on a known mineral soil, a modeling approach was developed to predict P uptake of maritime pine seedlings growing in a mineral soil covered with a forest floor layer. The classical nutrient uptake model based on the diffusion/mass-flow theory was extended to take into account mineralization of P in dead organic matter, microbial P immobilization and re-mineralization and P leaching. In addition, the buffer power characterizing the P retention properties of the mineral soil was allowed to vary with time and with the P-ion concentration in solution. To account for increasing root competition with time, a moving boundary approach was implemented. According to the model, the forest floor contributed most of the P supply to the seedlings (99.3% after 130 days). Predicted P uptake was consistent with observed P uptake and modeling efficiency was 0.97. The uptake model was then used to evaluate the impact of the P retention properties of the mineral soil on the contribution of the forest floor to P uptake. Simulations showed that the contribution of the forest floor was much lower in the quasi non-reactive soil (45.7%) but rapidly increased with soil P reactivity.  相似文献   
39.
40.
Metalliferous soils cover a relatively large surface area in Morocco, and up to now no hyperaccumulating plants have been identified on these mining or these industrial sites. The aim of this work was to assess the extent of metal accumulation by plants found in three mining areas in southern Morocco with the ultimate goal of finding metal hyperaccumulating species by using the MetPAD biotest. The biotest helps to obtain information on the selective metal toxicity of aqueous extracts from the plants. A strong metal toxicity, as revealed by the biotest is an indication of a hyperaccumulating plant. Toxicity tests were run concurrently with chemicals analyses of metals in plants and their water extracts. The chemical analyses allow the determination of the hyperaccumulated metal(s). Specimens of the plant species mainly growing on and in the vicinity of the three mines were sampled with their corresponding soils. The results show that all plants analyzed had lower heavy metal content and toxicity despite the relatively very high soil concentrations. A comparison of our results with the criterion used to classify the hyperaccumulator plants indicates that plants we collected from mining sites were hypertolerant but not hyperaccumulators. This was confirmed by transfer factors generally lower than 1. Nevertheless, these tolerant plants species can be used as tools for revegetation for erosion control in metals-contaminated sites (phytostabilization).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号